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Supplementary Material

In this supplement, we first provide the implementation
detail in Sec. 1. We also provide further experiment details
in Sec. 2. Finally, we provide additional visual results in
Sec. 3. We encourage the readers to view our accompanying
videos in the supplement, showcase the rotation of objects
rendered with normals as presented in the paper.

1. Implementation Details
In our training setup, we start with a learning rate of 1e-
10 and warm it up to 1e-4 over 5,000 steps. We use a
total batch size of 256. We train our DetailGen3D model
for 1,000 epochs, which takes approximately eight days on
eight A800 GPUs. When training the data-dependent rec-
tified flow, we randomly zero the DINO features with a
probability of 10% to enable classifier-free guidance dur-
ing inference, thereby improving the quality of conditional
generation. For the DINO V2 [4] checkpoint, we use the
ViT-L/14 distilled with the registered version, downloaded
from the official DINO V2 GitHub repository1.

At inference time, we extract tokens from the coarse ge-
ometry using FPS-VAE and, along with the image prompt’s
DINO feature, input them into DiT [5]. After denoising
with a guidance scale of 4 over 10 sampling steps, we de-
code the predicted tokens using the FPS-VAE decoder to
obtain refined geometry.

In our dataset design, we first normalize and rescale each
object to fit within a bounding box of side length 1, then
translate the object so that the bounding box is centered at
the origin. To reduce storage overhead, we randomly sam-
ple 100,000 points from each mesh. For the FPS-VAE input
point cloud, we further randomly subsample these points
from 100,000 down to 20,480.

2. Experiment Details
For the feed-forward reconstruction and generation exper-
iment, the FID [3] metric we evaluate following SDF-
stylegan [7], rendering 20 views with random camera poses.

For the optimization based reconstruction refinement ex-
periment, we render 40 views to train the neus. The camera
poses are elevation with -60, -30, 0, 30, 60 and azimuth with

1https://github.com/facebookresearch/dinov2

0, 45, 90, 135, 180, 225, 270, 315.

3. Additional Visual Results
We provide additional visual results in this section. Fig 1
shows GSO [2] generation results. Fig 2,3,4 shows Obja-
verse [1] generation results. Fig 5,6 shows GPTEval3D [6]
generation results. Fig 9 shows GSO [6] generation results.
Fig 10, 11, 12, 13, 14, shows Objaverse [1] generation re-
sults.

We also provide more ablation study visual results about
noise augmentation, as presented in Fig 15, 16.
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Algorithm 1 Data-Dependent Rectified Flow

1: procedure Z(RectFlow((X0, X1)))
2: Inputs: Draws from a coupling (X0, X1) of π0 and π1; velocity model vθ : Rd → Rd with parameter θ.
3: Training:
4: 1. Obtain π0 and π1 using π0 = E(G0) and π1 = E(G1), where E denotes the VAE encoder, G0 represents the coarse

geometry, and G1 represents the fine geometry.
5: 2. Optimize θ̂ = argminθ E

[
∥X1 −X0 − v(tX1 + (1− t)X0, t)∥2

]
, with t ∼ Uniform([0, 1]).

6: Sampling:
7: 1. Start with Z0 ∼ π0, where π0 = E(G0). Here, E denotes the VAE encoder, G0 represents the coarse geometry.
8: 2. Generate (Z0, Z1) by solving dZt = vθ̂(Zt, t)dt, obtaining {Zt : t ∈ [0, 1]}.
9: Return: Z = {Zt : t ∈ [0, 1]}.

10: end procedure
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Figure 1. Generation results on GSO. represent coarse, represent fine refinement results from our method.
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Figure 2. Generation results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 3. Generation results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 4. Generation results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 5. Generation results on GPTEval3D. represent coarse, represent fine refinement results from our method.
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Figure 6. Generation results on GPTEval3D. represent coarse, represent fine refinement results from our method.
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Figure 7. Optimization-based reconstruction results on GSO. represent coarse, represent fine refinement results from our method.
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Figure 8. Optimization-based reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 9. Feed-forward reconstruction results on GSO. represent coarse, represent fine refinement results from our method.
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Figure 10. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 11. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 12. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 13. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 14. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 15. Ablation study visual results.
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Figure 16. Ablation study visual results.
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