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Figure 1. Our method demonstrates effective geometry refinement across various tasks and representations. In the images, the coarse
geometry is displayed in gray , while the refined geometry produced by our approach is shown in red . On the right, zoomed-in details
are provided to better observe the refinement effects.

Abstract

Modern 3D generation methods can rapidly create shapes
from sparse or single views, but their outputs often lack
geometric detail due to computational constraints. We
present DetailGen3D, a generative approach specifically
designed to enhance these generated 3D shapes. Our key
insight is to model the coarse-to-fine transformation di-
rectly through data-dependent flows in latent space, avoid-
ing the computational overhead of large-scale 3D gen-
erative models. We introduce a token matching strategy
that ensures accurate spatial correspondence during re-
finement, enabling local detail synthesis while preserving
global structure. By carefully designing our training data
to match the characteristics of synthesized coarse shapes,
our method can effectively enhance shapes produced by var-
ious 3D generation and reconstruction approaches, from

single-view to sparse multi-view inputs. Extensive experi-
ments demonstrate that DetailGen3D achieves high-fidelity
geometric detail synthesis while maintaining efficiency in
training. Our project page is https://detailgen3d.
github.io/DetailGen3D/

1. Introduction

Obtaining high-quality 3D geometry has been a long-
standing research focus in the fields of computer vision
and graphics. High-quality 3D models are not only valu-
able in the film industry, video games, and virtual re-
ality but also play a crucial role in the rapidly advanc-
ing field of embodied intelligence, contributing signifi-
cantly to simulation environments. Early approaches for
high-quality multi-view stereo reconstruction rely on dense
multi-view inputs [1, 8, 17, 19, 27, 85]. Although recent
methods [5, 26, 67, 69] based on Neural Radiance Field
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(NeRF) [45] and 3D Gaussian Splatting (3DGS) [31] have
improved the end-to-end performance, reconstructing high-
quality geometry remains a challenging problem.

Recent methods for 3D generation from sparse or sin-
gle views have evolved into two main paradigms: 1) op-
timization using 2D generative models and 2) direct train-
ing with 3D data. The first approach leverages pre-trained
2D vision models - notably, DreamFusion [50] intro-
duced Score Distillation Sampling (SDS) to align rendered
views with text-conditioned distributions. Related meth-
ods [59, 70] have extended this paradigm, though they
consistently face geometric inconsistency issues, such as
the “Janus problem” where details conflict across view-
points. The second paradigm, training with 3D data, has
seen multiple technical advances. Multi-view diffusion ap-
proaches [33, 37, 38, 41, 43, 44, 51, 56, 57, 66] achieve
view consistency but struggle with geometric coherence in
fine details. Feed-forward Large Reconstruction Models
[25, 32, 40, 68, 72, 82, 94, 99] offer impressive speed but
face resolution constraints. While recent 3D diffusion mod-
els [53, 75, 91, 92, 95, 96] demonstrate quality improve-
ments through direct 3D training, computational demands
continue to limit their achievable resolution and detail.

While recent advances in 3D generation have shown
promising results, the generated shapes often lack fine ge-
ometric details. Simply scaling up these generative mod-
els demands prohibitive computational resources. Tradi-
tional geometry refinement approaches that rely on high-
resolution dense multi-view images are ill-suited for en-
hancing such generated shapes, as these additional in-
puts are typically unavailable. Furthermore, existing
optimization-based methods that utilize normal or shad-
ing information [46, 73, 74, 79, 88] require precise texture
alignment and struggle to preserve global shape coherence.
To address these challenges, we propose DetailGen3D, a
generative approach to 3D geometry refinement that learns
to synthesize plausible fine-scale details directly from high-
quality 3D shapes. By capturing the underlying geomet-
ric patterns through data-driven priors, our method can en-
hance coarse shapes while maintaining structural consis-
tency, even under noisy or incomplete information.

To tackle geometry refinement tasks with a generative
model, a straightforward approach is to train a coarse ge-
ometry conditioned diffusion model, as seen in 2D image
restoration methods [3, 87]. However, this method can be
resource-intensive and may not be optimal for 3D tasks. In-
stead, inspired by Fischer et al. [14], who achieved effec-
tive image super-resolution without relying on large gen-
erative models, we propose a more training-efficient strat-
egy. Rather than learning a complex mapping from noise
to fine details, we focus on directly modeling the trans-
formation between coarse and fine geometry using data-
dependent rectified flow [42]. This approach utilizes opti-

mal transport, which provides a direct and structured map-
ping between coarse and fine geometry. By exploiting this
coupling, we eliminate the need for the random coupling of
noise and fine details, thus significantly reducing the train-
ing cost. This method is better suited for scaling up, offering
a more efficient path to geometry refinement.

Specifically, we introduce a training method called to-
ken matching. Establishing the refinement process locally
is essential; otherwise, global refinement leads to ineffi-
cient training and hinders detail capturing. Token match-
ing matches the coarse geometry latent code with the fine
geometry latent code in latent space one-to-one, improving
training efficiency. It prevents the network from learning
unnecessary operations (e.g., swapping positions between
two latent codes) and focuses solely on local refinement op-
erations. This approach enables the capture of geometry
details even with a small network.

Effective geometry refinement requires carefully de-
signed training data. While high-quality 3D shapes are
available, obtaining matching coarse-fine pairs poses a sig-
nificant challenge. Simply applying traditional mesh degra-
dation algorithms (e.g., simplification or smoothing opera-
tions) leads to simple objects remaining unchanged or ex-
treme degradation on complex objects, resulting in low-
quality coarse-fine pairs. To address this, we leverage
an LRM-based model that reconstructs 3D geometry from
sparse-view renderings of high-quality fine models. This
approach enables consistent degradation across objects of
varying complexity, enhances the utilization of existing
3D objects, and increases both the quality and quantity of
coarse-fine pairs.

In summary, our contributions are as follows:
1. We develop a novel generative geometry refinement al-

gorithm, demonstrating its highly effectiveness for dif-
ferent geometric representations.

2. We propose a data-dependent rectified flow to incorpo-
rate coarse geometry information, enabling local distri-
bution transformation from coarse to refined geometry.

3. We introduce a token matching training method that sig-
nificantly enhances training efficiency and spatial corre-
spondence accuracy.

2. Related Works
3D generation using 2D generative model. With the
significant advancements in text-to-image generation mod-
els [2, 54, 55], methods for text to 3D generation based on
SDS loss optimization [9, 35, 36, 50, 59, 62, 70, 80, 86]
have emerged, allowing the acquisition of 3D models with-
out relying on multi-view inputs. However, these image dif-
fusion models lack 3D priors, leading to the generation of
3D models that often suffer from the “Janus problem”, with
poor alignment between geometry and texture, as well as
substantial time overhead.
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3D generation using 3D data training. Finetuning image
diffusion models using Objaverse [11], Objaverse-XL [12]
to generate reasonably consistent multi-views with 3D con-
sistency, which could then be input into multi-view re-
construction models to obtain 3D geometry [33, 37, 38,
41, 43, 44, 51, 56, 57, 66]. Some methods trying to im-
prove multi-view consistency [63, 71, 81, 83], but geome-
try quality is even worse than previous methods since only
2D supervision is used. Using triplane as 3D represen-
tation, large-scale reconstruction model [25, 32, 60, 65,
68, 72, 82, 84, 99] utilizing transformer architectures and
triplane representations with fixed-view multi-view inputs,
enabling reconstruction in just a few seconds. However,
the extensive training time and GPU memory requirements
of large reconstruction models severely limit their resolu-
tion. Generative models using triplane as 3D representa-
tion [21, 24, 58, 76, 93] meet the same problem as well.
Using point cloud as 3D representation improves the ef-
ficiency [30, 34, 47, 91, 95–97] also brings high training
costs. Some recent methods use voxel [39, 53, 78] or gaus-
sian [63, 92, 94] as 3D representation are also efficient.
3D shape detailization. SketchPatch [16] uses a Patch-
GAN [29] discriminator to mimic the local style of a refer-
ence image, stylizing plain solid-lined sketches. DECOR-
GAN [10], which employs PatchGAN to generate detailed
voxel shapes from input coarse voxels, with the geomet-
ric style of the generated shape derived from a detailed ref-
erence voxel model. ShaDDR [6] enhances the generated
geometry of DECORGAN by utilizing a 2-level hierarchi-
cal GAN and introducing texture generation. Meanwhile,
DECOLLAGE [7] further improves shape detailization
through structure-preserving losses and adaptive weighting
of style and global discriminators. However, these methods
primarily focus on enhancing the voxel resolution of low-
quality inputs, which is different from our method: pushing
the boundaries of detail enhancement beyond current state-
of-the-art generative models, capturing finer details missed
by coarser methods.

3. Methods
Our method F is designed to refine coarse geometry GCoarse
into fine geometry GFine, guided by an image prompt I .
Here, GCoarse may originate from reconstruction or gener-
ation processes, while GFine represents an enhanced version
with improved surface quality and additional geometric de-
tails, such as noise removal and refinement:

GFine = F(GCoarse, I) (1)

Considering this process has strong uncertainty, we
model this process using generative model. In particular,
we select rectified flow [42] because of its efficiency based
on optimal transport and its ability to model the mapping re-
lationship between two data distributions, i.e., between the

distribution of coarse geometry and fine geometry. Our in-
ference pipeline is shown in Fig 2 (1).

3.1. Data Dependent Rectified Flow
We use data-dependent rectified flow to model the distribu-
tion mapping of coarse and fine geometry due to its effi-
ciency. Compared to modeling the transformation between
Gaussian noise and fine geometry, directly modeling the
transformation between coarse and fine geometry can, to
some extent, reconstruct the coarse shape without extensive
denoising training, as demonstrated in Fig 7. In contrast,
modeling the distribution mapping between noise and fine
geometry, with coarse geometry as a condition via cross-
attention, requires longer training time to achieve noise-to-
coarse mapping.
Model Architecture. To improve efficiency, we build our
refinement process in latent space, and our network consists
of two parts: 3D Variational Autoencoder (3D-VAE) and
Diffusion Transformer [49] (DiT).
3D Variational Autoencoder. The design of our 3D-VAE is
primarily inspired by 3DShape2VecSet [91] and CLAY [95]
and shares the same architecture with CLAY’s VAE. To
transform 3D geometry into latent space, we first sample
point cloud X from 3D geometry’s surface and adopt a two-
stage downsampling (random downsample firstly then ap-
ply farthest point sampling [18]) for X to get query points
X0. Lastly, the cross attention is applied to X and X0 with
learnable positional embedding to obtain latent code z.:

z = E(X) = CrossAttn(PosEmb(X0), PosEmb(X)) (2)

The 3D-VAE decoder, composed of several self atten-
tion layers and a cross attention layer, transform latent code
z to signed distance field (SDF) with preset query points q.:

SDF = D(q, z) = CrossAttn(PosEmb(q), SelfAttn(z)) (3)

Diffusion Transformer. Our DiT network, comprised of
24 DiT blocks with a width of 768 and totaling 368M pa-
rameters, is designed with efficiency in mind. Each DiT
block consists of a multi-head cross-attention layer (MCA),
a multi-head self-attention layer (MSA), and a feedfor-
ward network (FFN), interleaved with layer normalization
(LN). To accommodate the relatively small width, we in-
ject the time step t using the adaptive layer normalization
(adaLN) [28], modulating MSA, MCA, and FFN via fac-
tors g, γ, and s, obtained by a MLP conditioned on t.:

z = z + gmsa · SelfAttn(mod(LNmsa(z), smsa, γmsa)) (4)

Turning to conditioning on the image prompt y, we adopt
cross-attention to ensure spatial alignment between latent
code and image feature, which is extracted by DINO
V2 [48]. The conditioning is defined as:

z = z + gmca · CrossAttn(mod(LNmca(z), smca, γmca), y) (5)

At last, tokens will pass through a feedforward network:
z = z + gffn · FFN(mod(LNffn(z), sffn, γffn)) (6)
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Figure 2. (1) Inference pipeline. We use 3D-VAE to extract tokens of the coarse geometry generated or reconstructed, then input the
coarse token and DINO feature [48] of the image prompt to DiT [49]. After the refinement process, we decode the predicted token using a
3D-VAE decoder to obtain refined geometry. The inference process takes only a few seconds. (2) For training data, we use reconstruction
results reconstructed by LRM using multi-views rendered from fine geometry as coarse geometry. (3) We demonstrate the token matching
process on the left. On the right, for the top one, we only use part query points, which are located in quadrant one, and for the bottom one,
we use full query points, which demonstrate that tokens represent the space around the corresponding query points.

Rectified Flow and Loss Functions. Unlike previous gen-
erative models that model the mapping between a Gaussian
distribution and the ground truth data distribution, we model
the mapping between the coarse geometry distribution and
the fine geometry distribution. Let z1 represent the fine ge-
ometry’s latent code and z0 corresponds to the coarse ge-
ometry’s latent code. The geometry latent code at time t,
zt, is given by:

zt = (1− t) · z0 + t · z1 (7)

The conditional probability P (z1|zt) is defined as:

P (z1|zt) = N (z|(1− t) · z0 + t · z1, σ2
min · I) (8)

The loss function L(θ) is:

L(θ) = Et,z0,z1,y

[
∥vθ(t, zt, y)− (z1 − z0)∥2

]
(9)

where vθ is parameterized by the DiT with learnable pa-
rameters θ and y is the image prompt. The L2 loss con-
strains the prediction of DiT with ground truth geometry in
the form of v-prediction in latent space.
Noise Augmentation. The degraded geometric distribution
is relatively independent so direct modeling of distribution
transformation between coarse and fine geometry cannot
well learn comprehensive refinement rules from the dataset,
leading to noisy results. Inspired by [15], we apply noise
augmentation to the latent code of coarse geometry, which
helps improve the quality. The noise ϵ is added to z0 be-
fore obtaining zt instead of after, as applying noise after
obtaining zt would affect the efficiency of optimal trans-
port, leading to an optimization path that is not straight. See
supplementary material for more details.

3.2. Token Matching
We propose token matching, a training method to match the
latent codes of coarse and fine geometries for efficient train-
ing, as shown in Fig 2 (3). Training without token matching
leads the network to learn not only refinement rules but also

unnecessary operations (e.g., swapping latent codes), sig-
nificantly reducing training efficiency. However, measuring
the similarity between latent codes is non-trivial. Since the
latent code represents the space area around the query points
X0 (Fig 2 (4)), we are inspired to match latent codes in la-
tent space similarly to matching query points in 3D space.

To balance effectiveness and efficiency, we propose
a novel token matching method. First, we obtain the
query points of fine geometry following 3D-VAE’s two-
stage downsampling (applying random downsampling then
farthest point sampling on fine geometry’s point cloud).
Next, we obtain coarse geometry’s query points by ap-
plying a nearest-neighbour algorithm to identify the clos-
est fine geometry’s query points X0 in the coarse point
cloud rather than downsampling coarse geometry’s point
cloud. This method is computationally efficient, maintain-
ing model generalization and offering robust performance
across both simple and complex geometries while ensuring
local refinement. We further discuss token matching in the
supplementary material.

3.3. Data Curation
To achieve effective local transformation between coarse
and fine geometries, well-aligned coarse–fine pairs are cru-
cial. Traditional geometric degradation techniques—such
as Taubin smoothing [64]- can effectively reduce high-
frequency noise in complex geometries but tend to be too
subtle for simpler ones. Moreover, applying the same degra-
dation across all objects risks distorting complex shapes
while failing to degrade simpler ones sufficiently. To ad-
dress these issues, we adopt the reconstruction outputs from
an LRM as shown in Fig 2 (2), which naturally introduce
a balanced level of geometric degradation that adapts to an
object’s inherent complexity. This choice not only preserves
spatial correspondence but also better replicates the artifacts
typical of neural reconstructions. Further details of data cu-
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ration strategy are provided in the supplementary material.
Considering that fine objects are essential for training,

we select Objaverse as our dataset and filter out the low-
quality objects by evaluating each object’s quality based on
CLIP [52] feature of four ortho rendering views. After fil-
tering, our training set consists of about 110,000 objects,
most of them are rich in details. We randomly partition the
dataset into a training set and an evaluation set, with the lat-
ter containing 350 objects. The coarse geometry is recon-
structed using a reimplemented version of Instant3D [32],
leveraging four orthographic views of objects at a resolu-
tion of 512.

4. Experiment

Our comprehensive evaluation of the model’s 3D geomet-
ric refinement capabilities is divided into three parts: 1).
FeedForward-based Reconstruction: We tested the refine-
ment ability of our method on the reconstruction results of
various LRM models to demonstrate its effectiveness. 2).
Generation: We assessed our method’s performance on the
generation outputs from different LRM models, showcasing
its versatility across diverse 3D representations. 3). More
3D representations: We applied our method to reconstruc-
tion results reconstructed by NeuS-like [67] optimization-
based and generation results generated by Rodin Gen-11

and Neural4D2, achieving impressive results that highlight
its strong generalization. We also performed ablation stud-
ies on our design choices. See the supplementary for more
implementation and experiment details.

For the metric, we select FID [22] as our metric and
obtain each object’s FID result following the setting of
SDF-styleGAN [98], which can assess visual quality, cap-
ture statistical differences, detect mode collapse, and serve
as a standardized benchmark despite not measuring fine-
grained consistency perfectly. Considering FID may not
fully capture the perceptible difference in fine details, we
also mixed results from different datasets, methods, and
tasks for a user study.

4.1. Feed-forward Reconstruction
Considering the coarse-fine pairs used in the training pro-
cess, where all coarse models are reconstructed by In-
stant3D [32], this experiment aims to evaluate the gener-
alizability by refining the reconstruction results of different
kinds of LRM, including Instant3D as well.

For the evaluation set, we randomly sampled 199 mod-
els from the GSO [13] dataset and selected 350 unseen mod-
els from [11] as the evaluation set. For the LRM, We used
Instant3D [32], CRM [71], InstantMesh [81] (testing both
NeRF and Mesh, the checkpoints used are all the official

1https://hyperhuman.deemos.com/rodin
2https://www.neural4d.com/

large versions provided). We render multi-view images ac-
cording to different LRM’s requirements and use their re-
construction results as coarse model.

Visualization results can be found in Fig 3 and FID re-
sults can be found in Tab 1. Our method can highlight the
blurry details in the coarse model and add details only exist
in the image prompt. In addition, for the aliasing existing on
the input geometric surface, our method can eliminate them
and show a smoother geometric surface. The FID measure-
ment results reflect the effectiveness and robustness of our
method for different models and different objects.

FID ↓ Reconstruction Generation
Coarse Fine Coarse Fine

Instant3D [32] 20.33 19.07 x x
TripoSR [65] x x 51.80 33.33

CRM [71] 40.13 25.29 48.91 33.74
InstantMesh (NeRF) [81] 58.35 29.51 50.12 25.75
InstantMesh (Mesh) [81] 35.32 24.45 33.85 25.79

Table 1. FID comparison of applying our method to different LRM
results on reconstruction/generation task using Objaverse.

4.2. Generation

For the generation refinement task, we randomly sampled
199 models from the GSO [13] dataset and selected 350
unseen models from Objaverse [11] as the evaluation set,
same as mentioned before. Additionally, to explore the re-
finement ability, we used 110 images provided by GPTE-
val3D [77] as input, employing TripoSR [65], CRM [71]
and InstantMesh [81] (testing both NeRF and Mesh, the
checkpoints used are all the official large versions pro-
vided.) as generation models for the coarse geometry.

As the visualization results illustrated in Fig 4 and FID
results shown in Tab 1, our method performs particularly
well on complex objects, while coarse models’ surface have
large geometric noise and lack details. Furthermore, our
method shows outstanding performance in FID scores.

For generation results, some of them are not well
aligned with the input image. However, our method can
still refine them in a proper way, where aligning the original
shape and adding finer local detail. It shows that although
our method learns refinement ability with aligned image-
coarse shape pairs, our method knows how to use image
prompt to add local details.

For experiments on GPTEval3D generation results, re-
finement results shows the robustness of our method to such
challenging data, as illustrated in Fig 5. Each image from
GPTEval3D [77] is used to obtain coarse models through
image-to-3D models (i.e., TripoSR, CRM, InstantMesh)
and serves as an image prompt in the refinement process.
Due to the high level of difficulty, most image-to-3D gen-
eration models struggled to produce reasonable 3D models
based on these images. We selected the plausible 3D mod-
els from them and applied our refinement method.
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Source:
Instant3D

Source:
CRM

Source:
InstantMesh(NeRF)

Source:
InstantMesh(Mesh)

Figure 3. We apply our method on input meshes reconstructed by different approaches (Instant3D [32], CRM [71], InstantMesh [81]).
represent coarse, represent fine refinement results from our method. The top three objects are from Objaverse, while the bottom object
is from GSO. More results can be found in the supplementary.

4.3. More 3D representations

To further evaluate the generalizability on other 3D repre-
sentations, we tested our refinement ability on reconstruc-
tion results of NeuS [67] and generation results of two com-
mercial products, i.e., Rodin Gen-1, Neural4D.

Considering the long optimization time of NeuS and
limited quota of Rodin Gen-1 and Neural4D, randomly
sampled a subset of evaluation of Objaverse and GSO used
in previous experiments for evaluation.

The refinement results are all illustrated in Fig 6 and
demonstrate that our method successfully refines and cor-
rects irregular details. The results of NeuS are reconstructed
with 40 views evenly distributed around each object. How-
ever, due to the lack of prior guidance, they are prone to arti-
facts in scenarios with complex occlusions, and the smooth-
ness of the surface remains imperfect. After refining by our
method, the shredded parts are became continuously and

details are more obvious. Considering commercial products
are trained on huge 3D data with large amount of GPUs, we
selected images from GPTEval3D as input. The generation
results have smooth surface but still lacked of details. Af-
ter refinement, more details are carved onto geometry, and
shapes are more plausible.

4.4. User Study

The FID metric, while showing incremental improvement,
may not fully capture the perceptible difference in fine de-
tails achieved by our method, especially on complex ge-
ometries. We invited 32 researchers, primarily experts in
3D vision, and compared the geometry quality of 10 mod-
els (reconstructed and generated by Instant3D [32], In-
stantMesh [81], CRM [71], TripoSR [65]) before and af-
ter refinement. In the questionnaire, we presented four
views (azimuths: 45°, 135°, 225°, 315°; elevation: 15°)
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Source:
TripoSR

Source:
CRM

Source:
InstantMesh(NeRF)

Source:
InstantMesh(Mesh)

Figure 4. We apply our method on input meshes generated by different approaches (TripoSR [65], CRM [71], InstantMesh [81]).
represent coarse, represent fine refinement results from our method. The top three objects are from Objaverse, while the bottom object
is from GSO. More results can be found in the supplementary.

Source:
TripoSR

Source:
CRM

Source:
InstantMesh(NeRF)

Source:
InstantMesh(Mesh)

Figure 5. We apply our method on input meshes generated by different approaches (TripoSR [65], CRM [71], InstantMesh [81]) using
GPTEval3D as input. represent coarse, represent fine refinement results from our method. More results can be found in the supple-
mentary.
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Source:
NeuS

Source:
Rodin Gen-1

Source:
Neural4D

Figure 6. We apply our method on input meshes reconstructed by NeuS and generated by Rodin Gen-1 and Neural4D. represent coarse,
represent fine refinement results from our method. More results can be found in the supplementary.

Method Coarse w/o Token matching w/o Image condition w/o Noise augmentation Cross attention Sorting w/o training Our full method

FID ↓ 20.33 19.79 21.31 17.98 23.92 20.58 24.22 19.32

Table 2. FID scores evaluated on the Objaverse evaluation set (350 objects) for different model ablations.

Coarse model w/o Token matching w/o Image condition

Cross attention Sorting w/o Training Our full method

w/o Noise augmentation 

Figure 7. Visualization of inference results with different settings.

of both coarse and refined geometries, rendered with con-
sistent code to ensure varied order and same color to avoid
bias, and asked users: “ Please look at the following image
and two 3D models and tell us which model you think is
more detailed and closer to the input image.”. The statis-
tics show that 94% of the votes chose that the geometry ob-
tained by refining using our method is better, which strongly
proved our method’s refinement ability.

4.5. Ablation Study
In our ablation study, we tested the effects of removing to-
ken matching, using cross-attention to inject coarse geom-
etry information, removing image prompts, removing noise
augmentation, and using a point cloud sorting algorithm to
query point cloud, inference without training for reference.
For all ablation experiments, we trained for approximately
100,000 steps on a dataset of 40,000 objects (subsample
from the training set), with the results tested on an evalu-
ation set of 350 objects from Objaverse (same as in previ-
ous experiments). We used FID as the evaluation metric
on the rendered images following the SDF-StyleGAN [98]
settings. The FID results are shown in Tab 2, and the visu-
alizations are presented in Fig 7.

Experimental results indicate that removing token
matching slows convergence, as the model must simultane-

ously learn both refinement transformations and unneces-
sary operation (e.g., position swapping); it is hard to gener-
ate unseen details in the coarse geometry without the image
condition; cross-attention modeling lacks the constraint of
one-to-one token correspondence between coarse and fine
models, making the noise-to-fine process inefficient and
yielding worse geometric quality after refinement; applying
point cloud sorting to the query point cloud yields no clear
benefit, and inference without training is almost as effective
in predicting coarse geometry.

Removing noise augmentation results in the lowest
FID, as shown in Tab 2. We speculate that this is primarily
due to two reasons: first, the Inception model [61], which
computes FID, is not sensitive to the noise perception of the
ensemble model, and second, the image conditioning en-
sures the results are more consistent with the ground truth,
even without noise augmentation. While these factors con-
tribute to low FID, the visual degradation remains clearly
noticeable, as demonstrated in Fig 7 and further illustrated
in the supplementary material.

5. Discussion and Conclusion
Limitation. Our method can robustly refine geometry
with image prompt. However, it still struggles with ultra-
precision details like extremly complex and small geometry
shown in image. This issue might be solved by training a
better 3D-VAE, collecting more diverse coarse and fine ge-
ometry pairs for training.
Conclusion. In this paper, we present a generative 3D ge-
ometry refinement method using an image as a prompt. We
introduce a training technique called Token Matching for lo-
calized geometry refinement. This approach proves highly
effective in both reconstruction and generation tasks, deliv-
ering refined results across diverse datasets, particularly for
complex geometries.
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DetailGen3D: Generative 3D Geometry Enhancement via Data-Dependent Flow

Supplementary Material

In this supplement, we first provide the implementa-
tion detail in Sec. 6. We also provide further experiment
details in Sec. 7 and further discussion in Sec. 8. Finally,
we provide additional visual results in Sec. 9. We encourage
the readers to view our accompanying videos in the supple-
ment, showcase the rotation of objects rendered with nor-
mals as presented in the paper.

6. Implementation Details

6.1. Model architecture
For the 3D-VAE encoder, after sampling N points from ge-
ometry’s surface, we first randomly downsample it to 4×M ,
where M is the number of latent codes of each object and
M = 2048, N = 20480. Next, obtaining query points X0

by using farthest point sampling to further subsample it with
1
4 ratio.

The 3D-VAE decoder, comprised 24 multi-head self
attention layer and a multi-head cross attention layer. For
the preset query points used in cross attention layer, it
evenly distributed in 3D space, using for querying the cor-
responding spatial SDF value, which can adopt marching
cube algorithm to convert it into mesh format.

For the Refinement DiT is comprised 24 DiT blocks
with a width of 768, 12 attention heads, and a latent length
of 2048, totaling 368M parameters. For the image prompt,
we use the image feature extracted by DINO V2 [48]. The
feedforward network in each DiT block consists of a two
layer multi layer perception with GELU activation and the
middle dimension is four times the input dimension.

6.2. Noise Augmentation
During training, we apply noise to z0 according to the
DDPM [23] linear schedule at 400 timesteps. During the in-
ference stage, noise augmentation is optionally, which can
reduce the impact of floating objects in the coarse model
on the final refined results. For our experiment, we all add
noise at 100 time steps.

6.3. Data Curation
To construct satisfying coarse-fine pairs, we choose to ob-
tain coarse model by using Instant3D to reconstruct through
four ortho views at a resolution of 512. It is worth mention
that some of the objects are textureless. For the training
dataset, we select Instant3D [32] to obtain coarse model,
and the objects are all from Objaverse [11]. It is worth not-
ing that the Instant3D we use is reimplemented by us be-
cause its code has not been released yet.

In order to align the coarse geometry with the fine ge-
ometry in space, we first normalize and rescale each object
to fit within a bounding box of side length 1, then translate
the object so that the bounding box is centered at the origin.

6.4. Training
In our training setup, we start with a learning rate of 1e-
10 and warm it up to 1e-4 over 5,000 steps. We use a
total batch size of 256. We train our DetailGen3D model
for 1,000 epochs, which takes approximately eight days on
eight A800 GPUs. When training the data-dependent recti-
fied flow, we randomly zero the DINO features with a prob-
ability of 10% to enable classifier-free guidance during in-
ference, thereby improving the quality of conditional gen-
eration. For the DINO V2 [48] checkpoint, we use the ViT-
L/14 distilled with the registered version, downloaded from
the official DINO V2 GitHub repository3. For the image
prompt, we select a forward view with same camera intrin-
sic and extrinsic for training because using more views or
highly random camera poses leads to longer training time.
We believe that introducing camera pose embedding (e.g.,
plucker embedding) will help.

7. Experiment Details
7.1. Other Methods
We didn’t compare with other shape detailization methods
as listed in related work because our tasks are different
and they cannot handle our evaluation set, as illustrated in
Fig.A 8. They aim at increasing the resolution of extremely
low resolution voxels to relative higher resolution (e.g., 163

to 643). Our evaluation set consists of up to 450 objects,
which are comes from GSO and Objaverse, however, their
evaluation set only consists of tens objects and comes from
the same category in ShapeNet [4] and have strict require-
ments on the orientation of objects (Refining a car from Ob-
javerse using ShaDDR [6]’s checkpoint—which is trained
on car objects from ShapeNet—produces worse results due
to the difference in orientation compared to the training set.)
and the input’s orientation shown in 8 is manually adjusted
to meet ShaDDR’s requirements.

7.2. Evaluation Dataset
For the Objaverse [11] evaluation set used, the IDs for mod-
els trained with different LRM methods are varied and not
publicly available, which may lead to unfair comparisons
between methods. However, we emphasize that our refine-
ment model has never seen these 3D models during training,

3https://github.com/facebookresearch/dinov2

1

https://github.com/facebookresearch/dinov2


Algorithm 1 Data-Dependent Rectified Flow

1: procedure Z(RectFlow((X0, X1)))
2: Inputs: Draws from a coupling (X0, X1) of π0 and π1; velocity model vθ : Rd → Rd with parameter θ.
3: Training:
4: 1. Obtain π0 and π1 using π0 = E(G0) and π1 = E(G1), where E denotes the VAE encoder, G0 represents the coarse

geometry, and G1 represents the fine geometry.
5: 2. Optimize θ̂ = argminθ E

[
∥X1 −X0 − v(tX1 + (1− t)X0, t)∥2

]
, with t ∼ Uniform([0, 1]).

6: Sampling:
7: 1. Start with Z0 ∼ π0, where π0 = E(G0). Here, E denotes the VAE encoder, G0 represents the coarse geometry.
8: 2. Generate (Z0, Z1) by solving dZt = vθ̂(Zt, t)dt, obtaining {Zt : t ∈ [0, 1]}.
9: Return: Z = {Zt : t ∈ [0, 1]}.

10: end procedure

Figure 8. Coarse model (left) is degraded and rotated manually fol-
lowing ShaDDR training setting. The model refined by ShaDDR
(right) is worse.

so its ability to refine the same object across different mod-
els fairly reflects the model’s generalization capability.

7.3. SDF-stylegan Setting
For the feed-forward reconstruction and generation exper-
iment, the FID [22] metric we evaluate following SDF-
stylegan [98], rendering 20 views with preset random cam-
era poses and same color (grey).

7.4. NeuS Reconstruction
For NeuS [67], to further improve speed, we used Instant-
NSR [20] implementation. For the multi-view data, we ren-
dered a uniformly distributed set of 40 views as input. The
camera poses are elevation with -60°, -30°, 0°, 30°, 60° and
azimuth with 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°.

8. Further Discussion
8.1. Token Matching
Although attempts were made to match latent code, the cor-
respondence is difficult to model effectively. We explored
the use of point cloud sorting algorithms, which work well
for simple geometries but struggle with complex geometries
due to their inability to preserve spatial relationships. Op-
timal Transport (OT) between coarse and fine query points
can handle more complex shapes, but is computationally
expensive and must be performed offline.

It is worth mentioning that using a learnable query in
place of query points in the VAE does not solve the prob-
lem. The first reason is that the VAE quality with learnable
queries is lower than that with query points. The second
reason is that using learnable queries makes it impossible
to ensure that the tokens with the same indices in the ten-
sor, obtained after encoding the coarse geometry and fine
geometry, have similar meanings.

Finally, we match the coarse geometry’s latent code
with fine geometry’s latent code by applying nearest-
neighbour algorithm to identify the closest fine geome-
try query points in the coarse geometry point cloud, us-
ing these as the coarse geometry’s query points. While
this design cannot theoretically guarantee one-to-one cor-
respondence, it does so experimentally. This is because
the 3D-VAE’s two-stage downsampling process (i.e., down-
sampling point cloud X sampled from geometry surface to
query points X0)—random downsampling followed by far-
thest point sampling—results in query points X0 of fine ge-
ometry being distributed far apart in space. As a result, the
nearest-neighbour algorithm becomes a viable method for
matching latent codes.

8.2. Data Curation
While our experimental results have shown our method has
strong generalizability across different sources of coarse
models, including both generation and reconstruction tasks,
there is still room for improvement. Using only one type
of LRM (e.g., Instant3D) may introduce bias, and we be-
lieve that applying geometry degradation and mixing multi-
ple LRM reconstruction results will be of help.

8.3. Application
Our focus on geometry refinement stems from the fact
that in many applications (e.g., design, simulation) re-
plying on fine geometry, whereas color can be integrated
later [53, 75]. For the texture, our method supports to sim-
ply reproject the original textures onto the refined mesh or
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use separate texture-generation pipelines [89, 90]. This en-
sures high-quality geometry while preserving the flexibility
to include color information as needed.

9. Additional Visual Results
We provide additional visual results in this section. Fig 9
shows GSO [13] generation results. Fig 10,11,12 shows
Objaverse [11] generation results. Fig 13,14 shows GPTE-
val3D [77] generation results. Fig 17 shows GSO [77] gen-
eration results. Fig 18, 19, 20, 21, 22, shows Objaverse [11]
generation results.

We also provide more ablation study visual results
about noise augmentation, as presented in Fig 23, 24.
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Figure 9. Generation results on GSO. represent coarse, represent fine refinement results from our method.
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Figure 10. Generation results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 11. Generation results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 12. Generation results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 13. Generation results on GPTEval3D. represent coarse, represent fine refinement results from our method.
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Figure 14. Generation results on GPTEval3D. represent coarse, represent fine refinement results from our method.
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Figure 15. Optimization-based reconstruction results on GSO. represent coarse, represent fine refinement results from our method.
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Figure 16. Optimization-based reconstruction results on Objaverse. represent coarse, represent fine refinement results from our
method.
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Figure 17. Feed-forward reconstruction results on GSO. represent coarse, represent fine refinement results from our method.
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Figure 18. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 19. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 20. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 21. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.

20



Source:
Instant3D

Source:
CRM

Source:
InstantMesh(NeRF)

Source:
InstantMesh(Mesh)

Figure 22. Feed-forward reconstruction results on Objaverse. represent coarse, represent fine refinement results from our method.
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Figure 23. Ablation study visual results.
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Figure 24. Ablation study visual results.
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